Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38472106

RESUMO

BACKGROUND: Adenosinergic system has been implicated in the pathophysiology of bipolar disorder and drugs that affect adenosine neurotransmission have shown some efficacy as add-on therapy in manic patients. OBJECTIVE: Thus, the aim of the present study was to screen adenosinergic drugs for antimanic-like effect in methylphenidate (MPH)-induced hyperlocomotion in mice. METHODS: Male and female Swiss mice received a single allopurinol (50 and 200 mg/kg, ip), dipyridamole (20 mg/kg, ip), or inosine (50 mg/kg, ip) administration before an acute MPH challenge (5 mg/kg, sc). In experiments with repeated treatment, male mice received a daily administration of allopurinol (25 and 50 mg/kg, ip), dipyridamole (20 mg/kg, ip), or inosine (50 mg/kg, ip) for 14 days. Finally, pretreatment with aminophylline (2 mg/kg, sc), an unspecific adenosine receptor antagonist, was used to evaluate a putative adenosinergic mediation. Locomotor activity was measured in the automated activity chamber for 20 min. RESULTS: Acute and repeated dipyridamole reduced the increase in locomotor activity induced by MPH, while allopurinol and inosine had no effect. Aminophylline blocked the effect of dipyridamole in MPH-induced hyperlocomotion. CONCLUSION: The present results suggest that dipyridamole may have an antimanic-like effect through adenosine receptors and reinforce the proposal that the adenosine system may be an interesting target for new antimanic drugs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38240314

RESUMO

Neuroscience-Based Nomenclature (NbN) is a proposal to provide a nomenclature based on neuroscience and pharmacology instead of the old disease-based classification. NbN is based on the mechanism of action and pharmacological target and aims to assist in rational prescription, reduce stigma, and increase treatment adherence. Currently, NbN is endorsed by many psychiatric associations, adopted by several relevant journals, and included in major psychiatry textbooks. Therefore, it is important that NbN is known to psychiatrists.

4.
Behav Brain Res ; 461: 114841, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38159887

RESUMO

Cocaine use disorder (CUD) is a worldwide public health problem, associated with severe psychosocial and economic impacts. Currently, no FDA-approved treatment is available for CUD. However, an emerging body of evidence from clinical and preclinical studies suggests that biperiden, an M1 muscarinic receptor antagonist, presents potential therapeutic use for CUD. These studies have suggested that biperiden may reduce the reinforcing effects of cocaine. It is well established that rodents emit 50-kHz ultrasonic vocalizations (USV) in response to natural rewards and stimulant drugs, including cocaine. Nonetheless, the effects of biperiden on the cocaine-induced increase of 50-kHz USV remains unknown. Here, we hypothesized that biperiden could antagonize the acute effects of cocaine administration on rat 50-kHz USV. To test this hypothesis, adult male Wistar rats were divided into four experimental groups: saline, 5 mg/kg biperiden, 10 mg/kg cocaine, and biperiden/cocaine (5 and 10 mg/kg, i.p., respectively). USV and locomotor activity were recorded in baseline and test sessions. As expected, cocaine administration significantly increased the number of 50-kHz USV. Biperiden administration effectively antagonized the increase in 50-kHz USV induced by cocaine. Cocaine administration also increased the emission of trill and mixed 50 kHz USV subtypes and this effect was antagonized by biperiden. Additionally, we showed that biperiden did not affect the cocaine-induced increase in locomotor activity, although biperiden administration per se increased locomotor activity. In conclusion, our findings indicate that administering biperiden acutely reduces the positive affective effects of cocaine, as demonstrated by its ability to inhibit the increase in 50-kHz USV.


Assuntos
Cocaína , Ultrassom , Ratos , Masculino , Animais , Ratos Wistar , Biperideno/farmacologia , Vocalização Animal/fisiologia , Cocaína/farmacologia , Locomoção
5.
Behav Brain Res ; 458: 114759, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37952685

RESUMO

Ultrasonic vocalizations (USV) are emitted by both young pups and adult rats to convey positive or negative emotional states. These USV manifestations are contingent on factors including developmental stage, situational requirements, and individual dispositions. Pups emit 40-kHz USV when separated from their mother and litter, which function to elicit maternal care. Conversely, adult rats can produce 50-kHz USV in response to stimuli that elicit reward-related states, including natural rewards, stimulant drugs, and reward-predictive stimuli. The present study aims to investigate whether pup 40-kHz USV can serve as predictors of behaviors related to positive or negative states in adult rats. Both male and female Wistar pups were initially tested on the 11th postnatal day and subsequently in adulthood. There was no significant difference in the number of 40-kHz ultrasonic vocalizations between male and female pups. However, cocaine elicited more 50-kHz USV and hyperactivity in adult females compared to males. Notably, cocaine increased the proportion of step and trill USV subtypes in both adult males and females. Interestingly, this effect of cocaine was stronger in females that were in the diestrus, compared to the estrus phase. In males, a significant positive correlation was found between pup 40-kHz USV and lower anxiety scores in adult male but not female rats tested on the elevated plus-maze test. Furthermore, no significant correlation was found between pup 40-kHz and adult 50-kHz USV in both males and females, whether in undrugged (saline) or in cocaine-treated rats. It is possible that the 40-kHz USV emitted by pups predicted reduced anxiety-like behavior only for male rats because they could elicit maternal care directed specifically to male pups. These findings suggest that 40-kHz USV can serve as an indicator of the emotional link between the rat mother and male pups. Indeed, this suggests that maternal care exerts a positive influence on the emotional state during adulthood.


Assuntos
Cocaína , Ultrassom , Ratos , Animais , Feminino , Masculino , Vocalização Animal/fisiologia , Ratos Wistar , Cocaína/farmacologia , Teste de Labirinto em Cruz Elevado
6.
IBRO Neurosci Rep ; 14: 264-272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36926592

RESUMO

Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of ß-amyloid (Aß) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aß and GFAP in the hippocampus and that treatment with melatonin reduces Aß levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.

7.
Eur J Pharmacol ; 937: 175382, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379258

RESUMO

Since a significant body of studies supports the involvement of glutamatergic neurotransmission in the neurobiology of obsessive-compulsive disorder (OCD). Ketamine, a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist with rapid and sustained antidepressant effect, raises as a potential new anti-OCD drug. Evidence from pre-clinical studies indicates that female mice are more sensitive than male mice to ketamine antidepressant effects. Our group previously showed that S-ketamine, one ketamine enantiomer, induces an acute anti-compulsive effect in male mice. Herein, we investigated this S-ketamine effect in female adult Swiss mice as monotherapy or as an adjuvant to fluoxetine, a selective serotonin reuptake inhibitor (SSRI), compared to male mice. For this purpose, we assessed the S-ketamine anti-compulsive-like effect in the marble-burying (MBT) and nest-building (NBT) tests in adult female Swiss mice. S-ketamine reduced the compulsive-like behaviour of female mice in both animal tests in a dose larger (30 mg/kg) than the effective dose in male Swiss mice (10 mg/kg, Tosta et al., 2019). The association of sub-effective doses of S-ketamine and fluoxetine effectively reduced the marble-burying behaviour of both male and female Swiss mice, although male mice present a better response. The variation of female sex hormones (oestrogen and progesterone), inferred by oestrous cycle and ovariectomy, did not influence S-ketamine's response. In conclusion, we found that female mice are less sensitive to S-ketamine's anti-compulsive-like effect than male mice as monotherapy or adjuvant treatment, but oscillations in female sex hormones concentrations do not seem to explain this difference.


Assuntos
Fluoxetina , Ketamina , Camundongos , Masculino , Feminino , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Antidepressivos/farmacologia , Antagonistas de Aminoácidos Excitatórios , Carbonato de Cálcio , Hormônios Esteroides Gonadais
8.
Behav Brain Res ; 429: 113905, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35490774

RESUMO

The flavonoid myricitrin showed an antidepressant-like effect in the tail suspension test and increased hippocampal neurogenesis, as well as demonstrating anti-inflammatory effects. Interestingly, inflammation has been linked to depression, and anti-inflammatory drugs showed promising results as antidepressant-like drugs. Thus, the present study evaluated the effects of myricitrin in the chronic mild stress (CMS) model, a translational and valid animal model of depression, using the mini-experiment design to improve the reproducibility of the findings. The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were the readouts of depressive-like phenotypes induced by CMS. Relative adrenal weight was employed as an index of the hypothalamus-pituitary-adrenal (HPA) axis activation. Interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha levels were measured in the hippocampus. Myricitrin (10 mg/kg, intraperitoneally, for 14 days) reversed depressive-like behaviors induced by CMS (increased immobility in the FST, the TST and anhedonia), as well as decreased adrenal hypertrophy and hippocampal levels of IL-6 in stressed mice. Similar results were observed by imipramine (20 mg/kg, intraperitoneally, for 14 days), a serotonin and norepinephrine reuptake inhibitor (positive control). A significant correlation was observed between immobility time in the TST, and hippocampal IL-6 levels. Hippocampal TNF-α levels were not affected by CMS or drug treatment. In conclusion, myricitrin exhibited an antidepressant-like profile in CMS, and this effect may be associated with its anti-inflammatory activity.


Assuntos
Antidepressivos , Interleucina-6 , Animais , Anti-Inflamatórios/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Flavonoides/farmacologia , Hipocampo , Camundongos , Reprodutibilidade dos Testes , Estresse Psicológico/tratamento farmacológico
9.
Mol Psychiatry ; 27(8): 3138-3149, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35585261

RESUMO

Despite attaining significant advances toward better management of depressive disorders, we are still facing several setbacks. Developing rapid-acting antidepressants with sustained effects is an aspiration that requires thinking anew to explore possible novel targets. Recently, the lateral habenula (LHb), the brain's "anti-reward system", has been shown to go awry in depression in terms of various molecular and electrophysiological signatures. Some of the presumed contributors to such observed aberrations are astrocytes. These star-shaped cells of the brain can alter the firing pattern of the LHb, which keeps the activity of the midbrain's aminergic centers under tight control. Astrocytes are also integral parts of the tripartite synapses, and can therefore modulate synaptic plasticity and leave long-lasting changes in the brain. On the other hand, it was discovered that astrocytes express cannabinoid type 1 receptors (CB1R), which can also take part in long-term plasticity. Herein, we recount how the LHb of a depressed brain deviates from the "normal" one from a molecular perspective. We then try to touch upon the alterations of the endocannabinoid system in the LHb, and cast the idea that modulation of astroglial CB1R may help regulate habenular neuronal activity and synaptogenesis, thereby acting as a new pharmacological tool for regulation of mood and amelioration of depressive symptoms.


Assuntos
Habenula , Endocanabinoides/farmacologia , Astrócitos , Sinapses/fisiologia , Antidepressivos/farmacologia
10.
Mol Pain ; 18: 17448069211057750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35042377

RESUMO

Trigeminal neuropathic pain has been modeled in rodents through the constriction of the infraorbital nerve (CCI-ION). Sensory alterations, including spontaneous pain, and thermal and mechanical hyperalgesia are well characterized, but there is a notable lack of evidence about the affective pain component in this model. Evaluation of the emotional component of pain in rats has been proposed as a way to optimize potential translational value of non-clinical studies. In rats, 22 and 50 kHz ultrasonic vocalizations (USVs) are considered well-established measures of negative and positive emotional states, respectively. Thus, this study tested the hypothesis that trigeminal neuropathic pain would result, in addition to the sensory alterations, in a decrease of 50 kHz USV, which may be related to altered function of brain areas involved in emotional pain processing. CCI-ION surgery was performed on 60-day-old male Wistar rats. 15 days after surgery, von Frey filaments were applied to detect mechanical hyperalgesia, and USV was recorded. At the same timepoint, systemic treatment with d,l-amphetamine (1 mg/kg) allowed investigation of the involvement of the dopaminergic system in USV emission. Finally, brain tissue was collected to assess the change in tyrosine hydroxylase (TH) expression in the nucleus accumbens (NAc) and c-Fos expression in brain areas involved in emotional pain processing, including the prefrontal cortex (PFC), amygdala, and NAc. The results showed that CCI-ION rats presented mechanical hyperalgesia and a significant reduction of environmental-induced 50 kHz USV. Amphetamine caused a marked increase in 50 kHz USV emission in CCI-ION rats. In addition, TH expression was lower in constricted animals and c-Fos analysis revealed an increase in neuronal activation. Taken together, these data indicate that CCI-ION causes a reduction in the emission of environmental-induced appetitive calls concomitantly with facial mechanical hyperalgesia and that both changes may be related to a reduction in the mesolimbic dopaminergic activity.


Assuntos
Neuralgia , Neuralgia do Trigêmeo , Animais , Hiperalgesia/tratamento farmacológico , Masculino , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Neuralgia do Trigêmeo/complicações
11.
Acta Neurobiol Exp (Wars) ; 82(4): 511-520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36748974

RESUMO

Novel and effective treatments for mania are needed, and well­validated animal models are important to reach this goal. The psychostimulant­induced hyperactivity is the most frequently animal model of mania used. Although this model is validated pharmacologically using mood stabilizers, data about its predictive validity with negative controls (i.e., drugs that are clinically ineffective in treating mania) are lacking. The present study evaluated the effects of the repeated administration of a clinically effective drug (sodium valproate) and clinically ineffective drug (topiramate) on methylphenidate (MPH)­induced manic­like behaviors in Swiss mice in the behavioral pattern monitor (BPM). Methylphenidate increased locomotor activity and center activity in the BPM. Valproate attenuated the effect of MPH on locomotor and general activity, with no effect on center activity. Topiramate did not affect any MPH­induced manic­like behaviors. Methylphenidate did not change exploratory activity (rearing or nose poking). These results support the predictive validity of MPH­induced hyperactivity for screening antimanic­like drugs.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Camundongos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Metilfenidato/toxicidade , Topiramato/farmacologia , Mania/tratamento farmacológico , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Estimulantes do Sistema Nervoso Central/toxicidade
12.
Br J Pharmacol ; 179(8): 1565-1577, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34389975

RESUMO

BACKGROUND AND PURPOSE: Currently, there is no effective drug to treat cocaine-use disorder, which affects millions of people worldwide. Benzodiazepines are potential therapeutic candidates, as microdialysis and voltammetry studies have shown that they can decrease dopamine concentrations in the nucleus accumbens of rodents and block the increase in dopamine levels and appetitive 50-kHz ultrasonic vocalizations (USVs) induced by amphetamine in rats. EXPERIMENTAL APPROACH: Here, we tested whether administration of 2.5-mg·kg-1 diazepam (i.p.) in adult male rats could block the effects of 20-mg·kg-1 cocaine (i.p.) on electrically evoked phasic dopamine signals in the nucleus accumbens measured by fast-scan cyclic voltammetry, as well as 50-kHz USV and locomotor activity. KEY RESULTS: Cocaine injection increased evoked dopamine signals up to threefold within 5 min, and the increase was significantly higher than baseline for at least 75 min. The injection of diazepam, 5 min after cocaine, attenuated the cocaine effect by nearly 50%, and this attenuation was maintained for at least 40 min. Behaviourally, cocaine increased the number of appetitive 50-kHz calls by about 12-fold. Diazepam significantly blocked this effect for the entire duration of the session. Also, cocaine-treated rats were more active than controls and diazepam significantly attenuated cocaine-induced locomotion, by up to 50%. CONCLUSION AND IMPLICATIONS: These results suggest that the neurochemical and psychostimulant effects of cocaine can be mitigated by diazepam. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Assuntos
Cocaína , Dopamina , Animais , Cocaína/farmacologia , Diazepam/farmacologia , Dopamina/farmacologia , Humanos , Locomoção , Masculino , Núcleo Accumbens , Ratos , Ultrassom , Vocalização Animal
13.
Behav Brain Res ; 413: 113443, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216648

RESUMO

The present study investigated the pharmacological mechanisms of the antidepressant-like effects of amantadine in mice and their influence on hippocampal neurogenesis. To improve the translational validity of preclinical results, reproducibility across laboratories and replication in other animal models and species are crucial. Single amantadine administration at doses of 50 and 75 mg/kg resulted in antidepressant-like effects in mice in the tail suspension test (TST), reflected by an increase in immobility time. The effects of amantadine were seen at doses that did not alter locomotor activity. The tyrosine hydroxylase inhibitor α-methyl-ρ-tyrosine did not influence the anti-immobility effect of amantadine in the TST. Pretreatment with the α1 adrenergic receptor antagonist prazosin, ß adrenergic receptor antagonist propranolol, α2 adrenergic receptor antagonist yohimbine, and α2 adrenergic receptor agonist clonidine did not alter the antidepressant-like effect of amantadine. However, amantadine's effect was blocked by the dopamine D2 receptor antagonist haloperidol and glutamate receptor agonist N-methyl-D-aspartate (NMDA). Repeated amantadine administration (50 mg/kg) also exerted an antidepressant-like effect, paralleled by an increase in hippocampal neurogenesis. The present results demonstrate that the antidepressant-like effects of amantadine may be mediated by its actions on D2 and NMDA receptors and likely involve hippocampal neurogenesis.


Assuntos
Agonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/farmacologia , Amantadina/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Amantadina/administração & dosagem , Animais , Antidepressivos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Neurogênese/efeitos dos fármacos , alfa-Metiltirosina/farmacologia
14.
J Psychiatr Res ; 139: 91-98, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058655

RESUMO

In rats, lisdexamfetamine (LDX) induces manic-like behaviors such as hyperlocomotion and increases in appetitive 50-kHz ultrasonic vocalizations (USV), which are prevented by antimanic drugs, such as lithium. Inhibition of glycogen synthase kinase 3 beta (GSK3ß) and antioxidant activity have been associated with antimanic effects. Thus, the aim of the present study was to evaluate the possible antimanic-like effects of andrographolide (ANDRO), a GSK3ß inhibitor, on LDX-induced hyperlocomotion and 50-kHz USV increases. In addition, the effect of ANDRO was studied on LDX-induced oxidative stress. Lithium was used as positive control. Adult Wistar rats were treated with vehicle, lithium (100 mg/kg i.p., daily) or ANDRO (2 mg/kg i.p., 3 times a week) for 21 days. On the test day, either 10 mg/kg LDX or saline was administered i.p. and USV and locomotor activity were recorded. LDX administration increased the number of 50-kHz calls, as well as locomotor activity. Repeated treatment with lithium or ANDRO prevented these effects of LDX on 50-kHz USV and locomotor activity. LDX increased lipid peroxidation (LPO) levels in rat striatum and both lithium and ANDRO prevented this effect. LPO levels in rat striatum were positively correlated with increases in 50-kHz USV emission as well as hyperlocomotion. In conclusion, the present results indicate that ANDRO has antimanic-like effects, which may be mediated by its antioxidant properties.


Assuntos
Transtorno Bipolar , Ultrassom , Animais , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/tratamento farmacológico , Modelos Animais de Doenças , Diterpenos , Mania , Estresse Oxidativo , Ratos , Ratos Wistar , Vocalização Animal
15.
Brain Res Bull ; 168: 63-73, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359641

RESUMO

The most common features of Parkinson's disease (PD) are motor impairments, but many patients also present depression and memory impairment. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has been shown to be effective in patients with treatment-resistant major depression. Thus, the present study evaluated the action of ketamine on memory impairment and depressive-like behavior in an animal model of PD. Male Wistar rats received a bilateral infusion of 6 µg/side 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNc). Short-term memory was evaluated by the social recognition test, and depressive-like behaviors were evaluated by the sucrose preference and forced swimming tests (FST). Drug treatments included vehicle (i.p., once a week); ketamine (5, 10 and 15 mg/kg, i.p., once a week); and imipramine (20 mg/kg, i.p., daily). The treatments were administered 21 days after the SNc lesion and lasted for 28 days. The SNc lesion impaired short-term social memory, and all ketamine doses reversed the memory impairment and anhedonia (reduction of sucrose preference) induced by 6-OHDA. In the FST, 6-OHDA increased immobility, and all doses of ketamine and imipramine reversed this effect. The anti-immobility effect of ketamine was associated with an increase in swimming but not in climbing, suggesting a serotonergic effect. Ketamine and imipramine did not reverse the 6-OHDA-induced reduction in tyrosine hydroxylase immunohistochemistry in the SNc. In conclusion, ketamine reversed depressive-like behaviors and short-term memory impairment in rats with SNc bilateral lesions, indicating a promising profile for its use in PD patients.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ketamina/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Animais , Depressão/tratamento farmacológico , Depressão/patologia , Modelos Animais de Doenças , Imipramina/farmacologia , Masculino , Oxidopamina/farmacologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
16.
Int J Biol Macromol ; 164: 1675-1682, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795578

RESUMO

Chamomile is one of the most ancient medicinal herbs known to mankind and among its traditional uses are the calming effects. However, few studies explored its effects on the central nervous system (CNS). In this study we further proceed with structural elucidation of polysaccharides from chamomile tea. A highly substituted 4-O-methyl-glucuronoxylan (fraction SN-50R) was purified and chemically characterized, presenting Xyl:GlcA ratio of 1.7:1, Mw of 500 kDa and total sugar content of 98%. Its bioactivity on pain and on CNS was explored. Animals treated with SN-50R presented antinociceptive effect and a dose-dependent decrease in the number of crossings in the activity chamber and in the open field test, as well as a significant reduction in the number of marbles buried when compared to control. These results suggest that SN-50R presented sedative and anxiolytic-like effects and may be contributing for the calming effects obtained by chamomile tea ingestion.


Assuntos
Analgésicos/farmacologia , Ansiolíticos/farmacologia , Camomila/química , Hipnóticos e Sedativos/farmacologia , Extratos Vegetais/farmacologia , Chá/química , Xilanos/farmacologia , Animais , Feminino , Masculino , Camundongos , Plantas Medicinais/química , Polissacarídeos/farmacologia
17.
Learn Mem ; 27(8): 292-300, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669384

RESUMO

Reconsolidation is a time-limited process under which reactivated memory content can be modified. Works focused on studying reconsolidation mainly restrict intervention to the moments immediately after reactivation and to recently acquired memories. However, the brain areas activated during memory retrieval depend on when it was acquired, and it is relatively unknown how different brain sites contribute to reconsolidation and persistence of reactivated recent and remote fear memories. Here, we sought to investigate the participation of prelimbic (PL) and anterior cingulate cortices (ACC) in recent (1 d old) and remote (21 d old) fear memory reconsolidation and persistence. Male Wistar rats were submitted to the contextual fear conditioning protocol. Tamoxifen (TMX), an estrogen receptor modulator known to inhibit protein kinase C activity was used to interfere with these processes. When infused into the PL cortex, but not into the ACC, TMX administration immediately or 6 h after recent fear memory reactivation impaired memory reconsolidation and persistence, respectively. TMX administered immediately after remote memory reactivation impaired memory reconsolidation when infused into the PL cortex and ACC. However, remote memory persistence was only affected when TMX was infused 6 h after memory reactivation into the ACC and no effect was observed when TMX was infused 6 h after memory reactivation into PL cortex. Together, the findings provide further evidence on the participation of PL cortex and ACC in reconsolidation of recent and remote fear memories and suggest that the persistence of a reactivated fear memory becomes independent on the PL cortex with memory age and dependent on the ACC.


Assuntos
Medo/fisiologia , Giro do Cíngulo/fisiologia , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Giro do Cíngulo/efeitos dos fármacos , Masculino , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Ratos , Ratos Wistar , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Fatores de Tempo
18.
Pain ; 161(12): 2830-2840, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32569083

RESUMO

Acute pain that persists for a few days is associated with a reduction in patients' quality of life. Orofacial persistent pain promotes psychological disorders such as anxiety, impairs daily essential activities such as eating, and results in decreased social interaction. Here, we investigated whether rats subjected to orofacial formalin injection or intraoral incision surgery display persistent facial heat hyperalgesia, ongoing pain, anxiety-like behavior, and changes in ultrasonic vocalization. Orofacial formalin injection or intraoral incision caused facial heat hyperalgesia for 3 days compared with saline-injected and sham animals. In addition, both experimental groups showed a reduction in the number of entries and in the time spent in the open arms in the elevated plus maze test on day 3, suggesting that anxiety-like behavior developed as a consequence of persistent pain. At this time point, both groups also displayed a reduction in the number of 50-kHz calls, specifically in the flat subtype, which suggests a decrease in social communication. Moreover, on day 3 after surgery, systemic morphine produced robust conditioned place preference in rats subjected to intraoral incision compared with sham, and the former group also presented increased spontaneous facial grooming, revealing the presence of ongoing pain. Finally, Western blot and immunohistochemistry analysis showed a reduction in tyrosine hydroxylase expression in the nucleus accumbens, which may reflect a decrease in mesolimbic dopaminergic activity. Altogether, the results demonstrate that acute orofacial pain causes prolonged changes in behavioral and affective pain components, which may be related to dopaminergic changes in the nucleus accumbens.


Assuntos
Dor Aguda , Animais , Modelos Animais de Doenças , Dor Facial , Humanos , Hiperalgesia/etiologia , Qualidade de Vida , Ratos , Ratos Wistar
19.
Sci Rep ; 10(1): 4076, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139711

RESUMO

The persistence of newly acquired memories is supported by the activity of PKMζ, an atypical isoform of protein kinase C (PKC). Whether the activity of conventional and atypical PKC isoforms contributes to reactivated memories to persist is still unknown. Similarly, whether memory reactivation is a prerequisite for interventions to be able to change memory persistence is scarcely investigated. Based on the above, we examined the role of conventional and atypical PKC isoforms in the prelimbic cortex in reconsolidation and persistence of a reactivated contextual fear memory in male Wistar rats. It is shown that (i) inhibiting the PKC activity with chelerythrine or the PKMζ activity with ZIP impaired the persistence of a reactivated memory for at least 21 days; (ii) ZIP given immediately after memory reactivation affected neither the reconsolidation nor the persistence process. In contrast, when given 1 h later, it impaired the memory persistence; (iii) chelerythrine given immediately after memory reactivation impaired the reconsolidation; (iv) omitting memory reactivation prevented the chelerythrine- and ZIP-induced effects: (v) the ZIP action is independent of the time elapsed between its administration and the initial memory test. The results indicate that prelimbic cortex PKC and PKMζ are involved in memory reconsolidation and persistence.


Assuntos
Córtex Cerebral/fisiologia , Condicionamento Psicológico , Medo/fisiologia , Consolidação da Memória/fisiologia , Memória/fisiologia , Proteína Quinase C/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
20.
Artigo em Inglês | MEDLINE | ID: mdl-31982463

RESUMO

Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, presents a rapid and sustained antidepressant effect in clinical and preclinical studies. Regarding ketamine effects on anxiety, there is a widespread discordance among pre-clinical studies. To address this issue, the present study reviewed the literature (electronic database MEDLINE) to summarize the profile of ketamine effects in animal tests of anxiety/fear. We found that ketamine anxiety/fear-related effects may depend on the anxiety paradigm, schedule of ketamine administration and tested species. Moreover, there was no report of ketamine effects in animal tests of fear related to panic disorder (PD). Based on that finding, we evaluated if treatment with ketamine and another NMDA antagonist, MK-801, would induce acute and sustained (24 hours later) anxiolytic and/or panicolytic-like effects in animals exposed to the elevated T-maze (ETM). The ETM evaluates, in the same animal, conflict-evoked and fear behaviors, which are related, respectively, to generalized anxiety disorder and PD. Male Wistar rats were systemically treated with racemic ketamine (10, 30 and 80 mg/kg) or MK-801 (0.05 and 0.1 mg/kg) and tested in the ETM in the same day or 24 hours after their administration. Ketamine did not affect the behavioral tasks performed in the ETM acutely or 24 h later. MK-801 impaired inhibitory avoidance in the ETM only at 45 min post-injection, suggesting a rapid but not sustained anxiolytic-like effect. Altogether our results suggest that ketamine might have mixed effects in anxiety tests while it does not affect panic-related behaviors.


Assuntos
Ansiedade/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Medo/efeitos dos fármacos , Medo/psicologia , Ketamina/uso terapêutico , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Ansiedade/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/fisiologia , Ketamina/farmacologia , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...